Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 244: 117834, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065395

RESUMO

In the present study, shock-wave impact experiments were conducted to investigate the structural properties of nickel metal powder when exposed to shock waves. Both X-ray diffractometry and scanning electron microscopy were used to evaluate the structural and surface morphological changes in the shock-loaded samples. Notably, the experimental results revealed variations in lattice parameters and cell structures as a function of the number of shock pulses and the increasing volume. The transition occurred from P2 (100 shocks) to P3 (200 shocks). Remarkably, P5 (400 shocks) exhibited attempts to return to its initial state, and intriguingly, P4 displayed characteristics reminiscent of the pre-shock condition. Additionally, significant morphological changes were observed with an increase in shock pulses. Magnetic measurements revealed an increase in magnetic moment for P2, P3, and P4, but a return to the original state was observed for P5. Moreover, the capacitance exhibited an upward trend with increasing shock pulses, except for P5, where it experienced a decline. These findings underscore the significant impact of even mild shock waves on the physical and chemical characteristics of bifunctional nickel particles. This research sheds light on the potential applications of shock wave-induced structural changes in enhancing the magnetic properties and supercapacitor performance of nickel particles.


Assuntos
Fenômenos Magnéticos , Níquel
2.
J Colloid Interface Sci ; 645: 906-917, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37178567

RESUMO

HYPOTHESIS: Fluidic micelles and reverse micelles have served as exfoliation mediums. However, an additional force, such as extended sonication, is required. Gelatinous cylindrical micelles that are formed once desired conditions are achieved can be an ideal medium for the quick exfoliation of 2D materials without the need for any external force. The quick formation of gelatinous cylindrical micelles can rip off layers from the 2D materials suspended in the mixture leading to the quick exfoliation of 2D materials. EXPERIMENTS: Herein, we introduce a quick universal method capable of delivering high-quality exfoliated 2D materials cost-effectively using CTAB-based gelatinous micelles as an exfoliation medium. The approach is devoid of harsh treatment, such as prolonged sonication and heating, and a quick exfoliation of 2D materials is completed using this approach. FINDINGS: We successfully exfoliated four 2D materials (MoS2, Graphene, WS2, and BN) and investigated their morphology, chemical, and crystal structure along with optical and electrochemical properties to probe the quality of the exfoliated product. Results revealed that the proposed method is highly efficient in exfoliating 2D materials in a quick time without causing any significant damage to the mechanical integrity of the exfoliated materials.

3.
ACS Omega ; 7(20): 16895-16905, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35647444

RESUMO

To improve the production rate of MoS2 nanosheets as an excellent supercapacitor (SC) material and enhance the performance of the MoS2-based solid-state SC, a liquid phase exfoliation method is used to prepare MoS2 nanosheets on a large scale. Then, the MnO2 nanowire sample is synthesized by a one-step hydrothermal method to make a composite with the as-synthesized MoS2 nanosheets to achieve a better performance of the solid-state SC. The interaction between the MoS2 nanosheets and MnO2 nanowires produces a synergistic effect, resulting in a decent energy storage performance. For practical applications, all-solid-state SC devices are fabricated with different molar ratios of MoS2 nanosheets and MnO2 nanowires. From the experimental results, it can be seen that the synthesized nanocomposite with a 1:4 M ratio of MoS2 nanosheets and MnO2 nanowires exhibits a high Brunauer-Emmett-Teller surface area (∼118 m2/g), optimum pore size distribution, a specific capacitance value of 212 F/g at 0.8 A/g, an energy density of 29.5 W h/kg, and a power density of 1316 W/kg. Besides, cyclic charging-discharging and retention tests manifest significant cycling stability with 84.1% capacitive retention after completing 5000 rapid charge-discharge cycles. It is believed that this unique, symmetric, lightweight, solid-state SC device may help accomplish a scalable approach toward powering forthcoming portable energy storage applications.

4.
ACS Appl Mater Interfaces ; 14(27): 31109-31120, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767835

RESUMO

Laser-induced graphene (LIG) on paper substrates is a desirable material for single-use point-of-care sensing with its high-quality electrical properties, low fabrication cost, and ease of disposal. While a prior study has shown how the repeated lasing of substrates enables the synthesis of high-quality porous graphitic films, however, the process-property correlation of lasing process on the surface microstructure and electrochemical behavior, including charge-transfer kinetics, is missing. The current study presents a systematic in-depth study on LIG synthesis to elucidate the complex relationship between the surface microstructure and the resulting electroanalytical properties. The observed improvements were then applied to develop high-quality LIG-based electrochemical biosensors for uric acid detection. We show that the optimal paper LIG produced via a dual pass (defocused followed by focused lasing) produces high-quality graphene in terms of crystallinity, sp2 content, and electrochemical surface area. The highest quality LIG electrodes achieved a high rate constant k0 of 1.5 × 10-2 cm s-1 and a significant reduction in charge-transfer resistance (818 Ω compared with 1320 Ω for a commercial glassy carbon electrode). By employing square wave anodic stripping voltammetry and chronoamperometry on a disposable two-electrode paper LIG-based device, the improved charge-transfer kinetics led to enhanced performance for sensing of uric acid with a sensitivity of 24.35 ± 1.55 µA µM-1 and a limit of detection of 41 nM. This study shows how high-quality, sensitive LIG electrodes can be integrated into electrochemical paper analytical devices.


Assuntos
Técnicas Biossensoriais , Grafite , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Grafite/química , Lasers , Ácido Úrico
5.
Sci Rep ; 10(1): 10759, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32612159

RESUMO

Scalable production of high-quality MoS2 nanosheets remains challenging for industrial applications and research in basic sciences. N-methyl-2pyrrolidine (NMP) is a commonly used solvent for exfoliation of MoS2 nanosheets having further disadvantage of slow volatility rate. The present study demonstrates a cost-effective facile chemical route to synthesize few-layer MoS2 nanosheets using acetone as a solvent and by varying bulk initial concentration of samples to scale up the production in large scale to fulfill the demand for potential applications. In our study, we aim to obtain stable growth of high quality few layer MoS2 nanosheets by long sonication times. Optical absorption spectra, Raman spectra, size of nanosheets and layer thickness of as-grown MoS2 nanosheets were found to be matching with those obtained from other synthesis methods. Effective photocatalytic performance of MoS2 nanosheets without being consumed as a reactant was experimented by decomposing Methylene Blue dye in aqueous solution under irradiation of visible light. This study provides an idea to synthesize low-cost, sustainable and efficient photocatalytic material in large scale for the next generation to control water pollution quite efficiently by protecting the environment from the contamination coming from these dyes.

6.
Glob Chall ; 3(2): 1800066, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31565359

RESUMO

In recent years, metal oxide-based, inexpensive, stable electrodes are being explored as a potent source of high performance, sustainable supercapacitors. Here, the employment of industrial waste red mud as a pseudocapacitive electrode material is reported. Mechanical milling is used to produce uniform red mud nanoparticles, which are rich in hematite (Fe2O3), and lower amounts of other metal oxides. A comprehensive supercapacitive study of the electrode is presented as a function of ball-milling time up to 15 h. Ten-hour ball-milled samples exhibit the highest pseudocapacitive behavior with a specific capacitance value of ≈317 F g-1, at a scan rate of 10 mV s-1 in 6 m aqueous potassium hydroxide electrolyte solution. The modified electrode shows an extraordinary retention of ≈97% after 5000 cycles. A detailed quantitative electrochemical analysis is carried out to understand the charge storage mechanism at the electrode-electrolyte interface. The formation of uniform nanoparticles and increased electrode stability are correlated with the high performance. This work presents two significant benefits for the environment; in energy storage, it shows the production of a stable and efficient supercapacitor electrode, and in waste management with new applications for the treatment of red mud.

7.
Nanomaterials (Basel) ; 9(10)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635101

RESUMO

This paper presents a plasma display device (PDD) based on laser-induced graphene nanoribbons (LIGNs), which were directly fabricated on polyimide sheets. Superior field electron emission (FEE) characteristics, viz. a low turn-on field of 0.44 V/µm and a large field enhancement factor of 4578, were achieved for the LIGNs. Utilizing LIGNs as a cathode in a PDD showed excellent plasma illumination characteristics with a prolonged plasma lifetime stability. Moreover, the LIGN cathodes were directly laser-patternable. Such superior plasma illumination performance of LIGN-based PDDs has the potential to make a significant impact on display technology.

8.
RSC Adv ; 8(66): 37590-37599, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35558609

RESUMO

Polystyrene is a chemically inert synthetic aromatic polymer. This widely used form of plastic is recalcitrant to biodegradation. The exponential production and consumption of polystyrene in various sectors has presented a great environment risk and raised the problem of waste management. Biodegradation by bacteria has previously shown great potential against various xenobiotics but there are only a few reports concerning polyolefins. By screening wetland microbes, we found two bacterial species - Exiguobacterium sibiricum strain DR11 and Exiguobacterium undae strain DR14 which showed promising biodegradation potential against polystyrene. In this study, we report the degradation of non-irradiated solid polystyrene material after incubation with these isolates. Growth studies suggested that the Exiguobacterium strains utilize polystyrene as a carbon source. Moreover, our data suggest that polymer degradation was initiated by biofilm formation over the PS surface leading to alteration in the physical properties of the material. Surface property analysis by AFM revealed significantly enhanced roughness resulting in reduced surface hydrophobicity of polystyrene. Fourier-transfer infrared (FT-IR) spectroscopic analysis showed breakdown of polystyrene backbone by oxidation. The extent of deterioration was further determined by percent weight reduction of polystyrene after incubation with bacteria. Our data support the fact that strains of extremophile bacterium Exiguobacterium are capable of degrading polystyrene and can be further used to mitigate the environmental pollution caused by plastics.

9.
J Colloid Interface Sci ; 474: 41-50, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27093455

RESUMO

Gel is an intermediate phase of solid and liquid, which exhibits properties of both, and this unique feature of gel has made it an excellent choice as a reaction medium for the nanomaterials synthesis. Herein, we report use of oil swollen surfactant gels as reaction medium and exfoliation medium, for the synthesis of metals (Au, Ag) nanoparticles and graphene, respectively. Confined growth of metals (Au and Ag) nanoparticles, has been achieved by exploring tween 80 based surfactant gel as a reaction medium. Au NPs prepared within tween 80 gel were found to be spherical with size ∼5nm, arranged in template micelles. Heating triggered the growth of Au nanoparticles and particles of various shapes including triangles, rods and pentagonal, were produced. Au and Ag containing tween 80 gels were found to be promising as catalysts for the nitrophenol reduction. Apart from separate synthesis of Au and Ag nanoparticles, bimetallic (Au-Ag) nanoparticles have also been synthesized by taking advantage of selective reducing property of tween 80. First time CTAB gel has been utilized as an exfoliation medium for the quick exfoliation of graphite into graphene sheets, eliminating the necessity of any external driving force such as sonication or heating, to reinforce exfoliation.

10.
J Nanosci Nanotechnol ; 11(8): 7011-4, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22103114

RESUMO

Vertically aligned multi-walled carbon nanotubes (CNTs) were grown on p-type silicon wafer using thermal chemical vapor deposition process and subsequently treated with oxygen plasma for oxidation. It was observed that the electron field emission (EFE) characteristics are enhanced. It showed that the turn-on electric field (E(TOE)) of CNTs decreased from 0.67 (untreated) to 0.26 V/microm (oxygen treated). Raman spectra showed that the numbers of defects are increased, which are generated by oxygen-treatment, and absorbed molecules on the CNTs are responsible for the enhancement of EFE. Scanning electron microscopy and Transmission electron microscopy images were used to identify the quality and physical changes of the nanotube morphology and surfaces; revealing the evidence of enhancement in the field emission properties after oxygen-plasma treatment.


Assuntos
Nanotubos de Carbono , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Oxirredução , Análise Espectral Raman
11.
Small ; 7(5): 688-93, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21302358

RESUMO

The surface morphology of bucky papers (BPs) made from single-walled carbon nanotubes (CNTs) is modified by plasma treatment resulting in the formation of vertical microstructures on the surface. The shapes of these structures are either pillarlike or conelike depending on whether the gas used during plasma treatment is Ar or CH(4) . A complex interplay between different factors, such as the electric field within the plasma sheath, polarization of the CNT, intertubular cohesive forces, and ion bombardment, result in the formation of these structures. The roles played by these factors are quantitatively and qualitatively analyzed. The final material is flexible, substrate-free, composite-free, made only of CNTs, and has discrete vertically aligned structures on its surface. It shows enhanced field emission and electrochemical charge-storage capabilities. The field enhancement factor is increased by 6.8 times, and the turn-on field drops by 3.5 times from an initial value of 0.35 to 0.1 V µm(-1) as a result of the treatment. The increase in Brunauer-Emmett-Teller surface area results in about a fourfold improvement in the specific capacitance of the BP electrodes. Capacitance values before and after the treatments are 75 and 290 F g(-1) , respectively. It is predicted that this controlled surface modification technique could be put to good use in several applications based on macroscopic CNT films.


Assuntos
Nanotecnologia/métodos , Nanotubos de Carbono/química , Eletrodos , Microscopia Eletrônica de Varredura , Propriedades de Superfície
12.
J Nanosci Nanotechnol ; 9(7): 4367-70, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19916458

RESUMO

Crystalline zinc oxide (ZnO) nanoneedles were grown on n type Si(100) substrates using different catalyst of variable thicknesses by using thermal evaporation of ZnO and graphite powder in a tube with an Ar as a carrier gas. During the growth the temperature of the substrate was kept around 900-980 degrees C. The growth of ZnO nanoneedles was done by the Vapour-Liquid-Solid (VLS) method. The catalysts used in the experiments were gold (Au) and cobalt (Co). The shape and morphology of the nanoneedles were investigated by Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy. Different shaped nanoneedles were obtained on the catalysts. Raman scattering were used to characterize the structural properties and crystal quality of the obtained nanostructures. The composition details of nanoneedle were studied by XPS.

13.
J Nanosci Nanotechnol ; 9(7): 4392-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19916463

RESUMO

Microwave plasma enhanced chemical vapour deposition (MPECVD) was used for the production of carbon nanotubes. Vertically aligned multi-walled carbon nanotubes (MWCNTs) were grown on silicon substrates coated with cobalt thin films of thickness ranging from 0.5 nm to 3 nm. Prior to the nanotube growth the catalyst were treated with N2 plasma for 5-10 minutes that break the films into small nanoparticles which favour the growth of nanotubes. The CNTs were grown at a substrate temperature of 700 degrees C for 5, 10 and 15 minutes. The height of the CNT films ranging from 10 microm-30 microm indicating that the initial growth rate of the CNTs are very high at a rate of approximately 100 nm/sec. Electrical resistivity of the above samples was evaluated from I-V measurements. The activation energy (E(a)) was also calculated from the temperature dependent studies and it was found that the E(a) lies in the range of 15-35 meV. Raman spectroscopy was used to identify the quality of the nanotubes.


Assuntos
Cristalização/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Análise Espectral Raman/métodos , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...